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1. INTRODUCTION

A recent study reported by Leissa and So [1] establishes accurate vibration frequencies for
"nite length cylinders with free}free boundary conditions. In their work they also report
some results for "nite length cylinders with "xed}free boundary conditions. It is of interest
to note that they comment on the absence of published results for vibration of "nite length
cylinders with boundary conditions other than free}free. For instance, an absence of
vibration studies for "xed}free "nite length cylinders. Additionally, So and Leissa [2] in
a later report, o!er comments on studies of free}free "nite length cylinders that they
classi"ed as thick hollow cylinders. Additional pertinent references are given in reference
[2]. It is noteworthy that Hutchinson [3] gave results for an encased cylinder and that
study represents several combinations of boundary conditions for a "nite length cylinder.
The analysis to be reported herein will dwell upon a variety of boundary conditions for
isotropic "nite length cylinders and then continue with "nite length cylinders with
hexagonal material properties. Hexagonal material properties for beryllium [4, 5] are used
in this study.

There are some free vibration studies reported that concern "nite length cylinders with
anisotropic material properties. Lusher and Hardy [6] gave results for frequency and mode
shapes for a free}free cylinder with material properties of sapphire. Sapphire is of
crystal class 31 m and would not be suitable for an axisymmetric analysis. However,
Lusher and Hardy [6] argue, and justi"ably, that the sti!ness constant C

14
is small

compared with the remaining material constants and can be neglected. In that case the
material quali"es as an axisymmetric hexagonal class. Heyliger [7] reports results for an
anisotropic "nite length cylinder and uses the material properties given in [6]. It follows
that he was able to verify the work in reference [6] using a hexagonal form of sapphire. In
later work, Heyliger and Jilani [8] gave useful results for isotropic solid and hollow
cylinders and extended the previous analysis to include higher circumferential wave
numbers. They also gave the three- dimensional displacement equations of motion for an
orthotropic cylinder.
0022-460X/01/400927#15 $35.00/0 ( 2001 Academic Press
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2. GOVERNING EQUATIONS AND FINITE ELEMENT MODEL

The important equations are the strain}displacement equations in cylindrical (r, h, z)
co-ordinates and can be written in single subscript form as
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where u, v and w are the displacements in the r, h, z directions respectively. The formulation
is three dimensional and requires the complete matrix of sti!ness material constants. The
stress}strain equations are
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. A hexagonal material such as beryllium (Be) is

non-piezoelectric and, according to Nye [9], is further classi"ed as 6/mmm.
The global "nite element formulation can be derived using the Rayleigh}Ritz method or

the Galerkin method. The development is standard and can be found in numerous
textbooks [10]. The displacements, u, v, and w will be referred to symbolically as u and are
assumed in terms of nodal point variables,

u"[N] MuN, (4)

where MuN is the displacement vector that de"nes the local element nodal point
displacements and [N] is a suitable set of assumed shape functions. The shape functions can
be formulated directly in axisymmetric (r, z) co-ordinates or can be formulated as
isoparametric shape functions. Both formulations have been used and give identical results.
The advantage of the isoparametric element is that the analysis is not limited to a right
circular cylinder. In this study nine-node Lagrangian shape functions were used and written
in (r, z) co-ordinates. The local "nite element equation for dynamic elasticity for cylinders
with zero surface traction can be written as

P
V

[B]T [C] [B] MuNd<!P
V

[N]T [o] [N]
L2MuN
Lt2

d<"0, (5)
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where [C] is a form of equation (3), [o] is the density matrix and [B] is further de"ned as

[B]"[¸] [N]. (6)

The operator matrix [¸] is de"ned according to the strain}displacement equations given by
equation (1):
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The three-dimensional spatial formulation is reduced to two dimensions by assuming
periodic solutions that will separate h and time dependence from r and z. However, each
"nite element node still has three degrees of freedom. The following assumptions are in
order [1]:

u(r, h, z, t)";(r, z) cosmh cosut, (8)

v(r, h, z, t)"<(r, z) sinmh cosut, (9)

w (r, h, z, t)"= (r, z) cosmh cosut, (10)

where m is an integer that is the circumferential wave number and u is the circular
frequency. Substituting into equation (6) gives the [B] matrix in terms of shape functions
and the circumferential wave number m. The development of the "nite element model is still
quite general and would be applicable for any set of assumed shape functions. The [B]
matrix becomes
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The nine-node element would require the [B] matrix to be 6]27. The three columns of
equation (11) would be repeated for N

2
through N

9
. A consistent mass matrix is developed

following the formulation given by equation (5). The matrix [N] of equation (5) would be
3]27 in order to accommodate three degrees of freedom. It follows that [o] would be
a 3]3 diagonal matrix de"ned as

[o]"

o 0 0

0 o 0

0 0 o

. (12)

The mass matrix becomes

[M]"P
V

[N]T [o] [N] d<. (13)

Equation (5) becomes a standard eigenvalue problem that can be written as

[K] MuN!u2 [M] MuN"0. (14)

Two basic global models were used to model vibrating "nite length cylinders:
a 40-element model with 187 nodes and 561 total degrees of freedom and a 50-element
model with 231 nodes and 693 total degrees of freedom. In every case only the "rst nine or
ten frequencies were of interest and the di!erence between the results obtained from the two
models was negligible. For the most part, the model with fewer degrees of freedom was used.

3. NUMERICAL RESULTS

An axisymmetric solid cylinder is assumed as illustrated in Figure 1 with radius a and
height ¸. Variables are non-dimensionalized with respect to radius a and material constant
C

44
. It follows that non-dimensional co-ordinates, material constants, time and frequency

are de"ned as
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Results for natural frequencies and mode shapes will be given for two sets of boundary
conditions, three cylinder heights and two materials. The boundary conditions can be
classi"ed as "xed}free and "xed}"xed. The cylinder is "xed at the base z"0 and free at
z"¸ and the second case is "xed against motion in the all co-ordinate directions at z"0
and ¸. The cylinder height is assumed to be ¸/a"1)0 representing a thick disk, ¸/a"2)0
representing a short cylinder ad ¸/a"4)0 representing a long cylinder. The materials are
given in Table 1 for an isotropic material with the Poisson ratio l"0)3 and beryllium. The
material properties that have been used for this study represent contrasting ratios of
C

11
compared with C

12
and C

44
. Table 1 illustrates the relative magnitudes of the material

constants in non-dimensional format.
Frequencies for "xed}free isotropic cylinders are given in Table 2 and compare favorably

with upper bound results given by Leissa and So [1] and So [11]. The frequencies of
Table 2 validate the "nite element analysis as well as extend the existing results to include
frequencies for beryllium cylinders with "xed}free boundary conditions. Representative
modes shapes for "xed}free cylinders are shown in Figures 2}4.



Figure 1. Finite length cylinder of radius a and length ¸.

TABLE 1

Elastic constants for Beryllium (Be) from reference [4, 5]; multiply by 1010 N/m2

C
11

C
33

C
12

C
13

C
44

C
66

Be 29)23 33)64 2)67 1)40 16)25 13)28
Bes 1)799 2)070 0)164 0)086 1)00 0)817
Isotropict 3)5 3)5 1)5 1)5 1)0 1)0

snon-dimensional C
1j

/C
44

;
tnon-dimensional, l"0)3.
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Torsional frequencies and longitudinal/radial frequencies can be separated when the
circumferential wave number m"0. Equations (11) and (1), when m"0, illustrate that
shear strains that involve h, ehz and e

rh , are uncoupled from the remaining strains. Pure
torsional modes can be computed by setting all ; and= displacements equal to zero as
boundary conditions in the "nite element analysis. Similarly, setting < to zero produces
pure longitudinal/radial frequencies and mode shapes when m"0.

The mode shapes and frequencies of Figures 2}4 correspond to an isotropic material.
Modes shapes for beryllium cylinders with "xed}free boundary conditions show similar
behavior as reported by Chua [12]. It turns out that the seventh and eighth mode shapes of
Figure 2 would appear as the eighth and seventh modes of Table 2 for a beryllium cylinder



TABLE 2

Frequencies X for solid cylinders with ,xed}free boundary conditions

Isotropic l"0)3 Beryllium

¸/a ¸/a

m mode 1 1t 2 2A 4 4A 1 2 4

0 1 2)558 4 2)558 1)286 3 1)286 0)640 3 0)640 2)225 4 1)128 3 0)564 3
2 3)317 8 3)316 2)960 5 2)960 1)860 7 1)859 2)498 5 2)359 8 1)691 7
3 4)039 4)039 3)169 3)169 2)787 2)783 3)295 2)604 2)334
4 5)527 5)524 4)184 4)182 2)953 2)951 4)835 3)312 2)536
5 6)551 6)548 4)298 4)297 3)357 3)346 5)903 3)404 2)569
6 7)234 4)488 3)654 6)658 4)039 2)780
7 7)472 5)357 3)891 6)773 4)720 2)847
8 8)709 5)760 3)974 7)033 5)058 3)200
9 9)045 6)251 4)124 7)743 5)645 3)687

0s 1 1)571 2 0)786 2 0)785 0)393 2 0)393 1)571 2 0)785 2 0)393 2
2 4)713 2)356 6 2)356 1)178 5 1)178 4)713 2)356 7 1)178 5
3 5)372 3)929 3)927 1)965 9 1)963 4)902 3)929 1)965
4 6)972 5)197 5)195 2)755 2)749 6)616 4)710 2)755
5 7)859 5)510 5)498 3)555 3)544 7)792 5)207 3)555
6 8)589 5)652 4)372 7)859 5)510 4)372
7 9)389 6)468 5)153 8)970 6)083 4)660
8 9)670 7)110 5)215 9)130 7)110 4)791
9 11)020 7)534 5)271 10)743 7)206 5)042

1 1 1)305 1 1)303 0)506 1 0)506 0)158 1 0)159 1)225 1 0)459 1 0)142 1
2 2)738 5 2)738 1)445 4 1)444 0)652 4 0)650 2)538 6 1)357 4 0)605 4
3 3)230 6 3)230 2)592 8 2)588 1)392 6 1)383 2)764 7 2)434 9 1)303 6
4 4)121 4)117 2)855 9 2)854 1)940 8 1)928 3)704 2)529 1)870 8
5 5)209 5)204 3)358 3)346 2)396 2)368 4)839 3)060 2)308
6 5)494 3)635 2)611 5)043 3)259 2)354
7 5)925 4)049 2)895 5)291 3)767 2)548
8 6)870 4)638 2)975 6)224 4)293 2)585
9 6)988 4)880 3)237 6)327 4)559 2)972
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2 1 2)435 3 2)434 2)162 5 2)162 2)134 2)132 2)205 3 1)989 5 1)961 9
2 3)305 3)305 2)519 7 2)518 2)350 2)350 3)038 8 2)274 6 2)113
3 4)531 4)530 3)456 3)449 2)508 2)503 3)878 3)210 2)262
4 4)899 4)854 3)767 3)760 2)869 2)847 4)512 3)516 2)627
5 6)233 6)219 4)356 4)347 3)314 3)292 5)786 3)725 3)135
6 6)392 4)760 3)417 5)968 4)249 3)268
7 7)006 4)863 3)866 6)408 4)505 3)591
8 7)387 5)307 4)007 6)582 4)800 3)666
9 8)170 5)910 4)365 7)230 5)418 3)690

3 1 3)405 9 3)404 3)260 3)258 3)271 3)253 3)145 9 3)037 3)038
2 4)168 4)166 3)699 3)698 3)615 3)164 3)748 3)286 3)225
3 5)701 5)693 4)298 4)289 3)678 3)674 5)075 3)890 3)286
4 5)936 5)932 4)658 4)651 3)898 3)878 5)322 4)391 3)503
5 7)086 7)063 5)377 5)350 4)284 4)168 6)417 4)935 3)887
6 7)408 5)617 4)369 6)900 5)112 4)233
7 7)697 6)109 4)742 7)055 5)287 4)425
8 8)212 6)282 4)831 7)652 5)602 4)582
9 9)351 6)870 5)255 8)062 6)269 4)906

4 1 4)348 4)347 4)290 4)281 4)335 4)281 4)062 4)016 4)044
2 5)122 5)120 4)784 4)783 4)724 4)723 4)540 4)219 4)179
3 6)527 6)517 5)213 5)204 4)774 4)770 5)968 4)658 4)234
4 7)103 7)093 5)617 5)608 4)935 4)917 6)398 5)243 4)396
5 7)945 7)918 6)174 6)140 5)232 5)173 7)030 5)797 4)691
6 8)383 6)427 5)420 7)756 5)963 5)055
7 8)753 7)200 5)651 7)947 6)442 5)396
8 9)100 7)468 5)742 8)580 6)632 5)513
9 10)374 7)760 6)121 9)103 6)917 5)761

storsional mode;
tSo [11];
ALeissa and So [1].
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Figure 2. Mode shapes for longitudinal/radial motion of "xed}free cylinders with ¸/a"1 and isotropic
material with l"0)3 and m"0 corresponding to Table 2.
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with ¸/a"1. Similarly for Figure 3, isotropic and beryllium mode shapes "ve and six are
interchanged with all others being the same for m"0, modes 1}9. Beryllium mode shapes
for ¸/a"4 are the same as in Figure 4 with mode shapes 3 and 4 interchanged. The
variations in mode shapes described thus far can be attributed to material di!erences.
Figures 2 and 3 can be compared and the "rst three mode shapes are similar for ¸/a"1 and
2. However, the second mode shape of Figure 3 occurs as the fourth mode shape of Figure 4,
¸/a"4. Figures 2}4 all represent the same material and the variation in longitudinal/radial
mode shapes between "gures can be attributed to geometry.

The analysis of Table 2 for m"0 and pure torsional frequencies indicates that the "rst
torsional mode in every case is dominated by the e

rz
strain. The frequency is a multiple of

n/2, n/4 and n/8 for ¸/a"1, 2 and 4 respectively. Additionally, a study of Table 2 for
¸/a"1 indicates that the "rst, second, "fth and ninth torsional modes are multiples of n/2.
The "rst, second, third, "fth and eighth frequencies are multiples of n/4 for the isotropic case
¸/a"2. The "rst seven torsional frequencies of Table 2 for isotropic materials that
correspond to ¸/a"4 and m"0 are multiples of n/8 and serve to illustrate the e!ect of
geometry, that is, as the length increases the e!ect of the shear strain ehz is more dominant.
Also, the accuracy of the "nite element analysis can be assessed independently of reference [1]



Figure 3. Mode shapes for longitudinal/radial motion of "xed}free cylinders with ¸/a"2 and isotropic
material with l"0)3 and m"0 corresponding to Table 2.

LETTERS TO THE EDITOR 935
and the seventh torsional frequency for ¸/a"4 was computed as 5)153 and compares
with 13n/8 (5)105) to within less than 1 per cent. Also, the "fth frequency given in reference
[1] and shown in Table 2 as 3)544 compares with the exact value of 9n/8 (3)5349) to
within less than 0)5 per cent and it follows that the results given in reference [1] are quite
accurate.

The underlined single digit numbers in Table 2 represent an analysis of the numerical
order of the frequencies and can be used to assist in assessing the e!ect of material versus
geometry on the frequency of vibration. The lowest ("rst) frequency corresponds to m"1
and the "rst mode for all "xed}free cylinder lengths and materials. Similarly, the "rst
torsional mode occurs as the second frequency in all cases. The e!ect of geometry appears to
dominate material e!ects for ¸/a"1 since the third frequency corresponds to the "rst
m"2 frequency for both materials. However, as ¸/a increases, material characteristics tend
to a!ect the order of the frequencies.



Figure 4. Mode shapes for longitudinal/radial motion of "xed}free cylinders with ¸/a"4 and isotropic
material with l"0)3 and m"0 corresponding to Table 2.
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Frequencies for "xed}"xed solid cylinders are given in Table 3. Selected mode shapes are
shown in Figures 5}7. Symmetrical boundary conditions, such as "xed}"xed, lead to mode
shapes that are symmetrical or antisymmetrical with respect to the center of the cylinder.
The symmetries of longitudinal/radial modes for m"0 are identi"ed in Table 3 and are
illustrated in the "gures. Observations similar to those for "xed}free cylinders are
applicable for "xed}"xed cylinders. Figure 5 corresponds to isotropic cylinders but when
compared with beryllium cylinders [12] the second and third, "fth and sixth, and eighth and
ninth mode shapes are interchanged respectively. Mode shapes for beryllium cylinders are
shown in Figure 6 and when compared with the isotropic counterparts only the "fth and
sixth mode shapes are interchanged. Mode shapes for beryllium cylinders are shown in
Figure 7 and appear in the order of 1, 2, 4, 3, 6, 5, 9, 7, 8 when compared to isotropic
cylinders of the same length. It is possible, with enough information, to delineate and
separate the e!ects caused by geometry from those caused by material properties.

The order of the "rst nine frequencies is shown in Table 3 using an underlined number
that appears to the right of each column of frequencies. The order of the "rst three modes is
the same for "xed}free and "xed}"xed cylinders as shown by comparing Tables 2 and 3.
However, "xed}"xed cylinders vary from "xed}free in the order of the frequencies as
evidenced by frequencies corresponding to m"4 occurring for "xed}"xed boundary



TABLE 3

Frequencies X for solid cylinders with ,xed},xed boundary conditions

¸/a

Isotropic l"0)3 Beryllium

m mode 1 2 4 1 2 4

0 1 4)671a 6 2)582s 3 1)288s 4 3)666a 4 2)257s 3 1)128s 3
2 5)243s 7 3)749a 2)445a 4)516s 7 2)740a 6 2)252a 9
3 5)904s 3)956s 3)178s 5)256s 3)262s 2)547a
4 7)271s 4)822a 3)614a 6)353s 4)306a 2)603s
5 8)408s 5)021s 3)720s 7)424a 4)529a 2)841s
6 8)786a 5)625a 3)836a 7)965s 4)546s 3)202s
7 9)084a 6)228s 4)282a 8)291a 5)634s 3)402s
8 10)66s 6)695a 4)290s 9)043a 5)887a 3)714a
9 10)873 7)225 4)498 9)245s 6)772s 4)028s

0| 1 3)142 2 1)571 2 0)785 2 3)142 2 1)571 2 0)785 2
2 6)022 3)142 6 1)571 5 5)606 3)142 9 1)571 5
3 6)285 4)718 2)359 8 6)285 4)718 2)359
4 8)117 5)372 3)153 7)814 4)902 3)153
5 9)009 6)022 3)961 8)245 5)607 3)961
6 9)437 6)307 4)790 9)436 6)307 4)710
7 10)526 6)975 5)197 9)886 6)620 4)790
8 10)744 7)922 5)372 10)517 7)792 4)902
9 12)170 8)134 5)645 11)082 7)832 5)209

1 1 3)012 1 1)433 1 0)627 1 2)953 1 1)387 1 0)589 1
2 4)194 4 2)667 4 1)250 2 3)851 5 2)490 5 1)189 4
3 5)342 9 3)196 7 2)001 6 4)721 9 2)771 7 1)898 6
4 5)917 3)296 8 2)264 7 5)408 3)177 2)199 8
5 6)765 4)230 2)811 5)652 3)837 2)435
6 6)925 4)355 2)857 6)564 4)094 2)680
7 6)964 4)884 3)139 6)783 4)620 2)770
8 7)512 5)529 3)198 6)852 4)991 2)959
9 8)746 5)611 3)593 7)651 5)064 3)263

2 1 3)734 3 2)684 5 2)383 9 3)510 3 2)438 4 2)143 7
2 5)333 8 3)309 9 2)529 4)708 8 3)085 8 2)292
3 5)533 4)078 2)883 5)073 3)840 2)634
4 6)359 4)454 3)251 6)086 3)931 3)075
5 7)727 4)761 3)347 6)825 4)352 3)330
6 7)989 5)364 3)790 7)240 4)737 3)537
7 8)187 5)537 4)091 7)646 5)304 3)721
8 8)906 6)148 4)318 8)097 5)742 3)845
9 9)124 6)622 4)487 8)475 6)051 3)904

3 1 4)601 5 3)821 3)628 4)216 3)419 3)240
2 5)982 4)232 3)712 5)593 3)893 3)328
3 6)637 4)934 3)928 5)751 4)769 3)538
4 6)938 5)201 4)227 6)607 4)773 3)865
5 8)693 5)868 4)426 8)031 5)127 4)300
6 9)088 6)359 4)647 8)083 5)707 4)334
7 9)202 6)479 4)879 8)638 5)997 4)637
8 9)327 6)790 5)159 8)690 6)173 4)790
9 10)044 7)599 5)427 9)301 6)921 5)025

4 1 5)498 4)875 4)734 4)960 4)326 4)196
2 6)634 5)221 4)805 6)243 4)737 4)274
3 7)587 5)844 4)966 6)889 5)467 4)437
4 7)976 5)984 5)213 7)198 5)685 4)694
5 9)673 6)758 5)454 8)926 6)242 5)050
6 9)759 7)050 5)555 8)964 6)450 5)385
7 10)020 7)724 5)789 9)218 6)887 5)513
8 10)208 7)879 6)002 9)789 6)993 5)597
9 11)206 8)343 6)230 10)020 7)630 5)903

Note: **torsional mode; s*symmetrical mode; a*antisymmetrical mode.
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Figure 5. Mode shapes for longitudinal/radial motion of "xed}"xed cylinders with ¸/a"1 and isotropic
material with l"0)3 and m"0 corresponding to Table 3.
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conditions when ¸/a"1. It does appear that as the cylinder length increases, ¸/a"4, the
ordering of the frequencies becomes similar.

A comment is in order concerning modelling a completely "xed boundary using
numerical methods and the equations of three-dimensional elasticity. In general, to achieve
a "xed condition the boundary conditions should be speci"ed to avoid rigid body
displacements. In this analysis the axisymmetric formulation would make ;(r"0) equal
zero without actually specifying ;(r"0) as a boundary condition. So [11] has
demonstrated, in a limited but correct manner, that the results of Table 2 for "xed}free
boundary conditions are correct, by making a comparison with existing theories. In
the absence of published results based upon three-dimensional elasticity, So [11] made the
comparison with one-dimensional Timoshenko beam frequencies for #exural (n"1) modes
and the agreement was within approximately one per cent for ¸/a"6. The axisymmetric
"nite element formulation is apparently over-constrained if ;(r"0) is speci"ed as
a boundary condition. Additionally, Table 4 can be used to validate the "nite element
results. Assume a hollow cylinder with inside radius b. Table 4 shows the frequency for
¸/a"2)0 as b approaches zero. The frequencies for b/a"0)001 are identical with the results
of Tables 2 and 3. Additionally, singularities such as the 1/r condition as r approaches zero
are avoided when using Gauss}Legendre quadratures for numerical integration. The
integration points always lie within the boundaries of the element and r can never become
numerically zero.



Figure 6. Mode shapes for longitudinal/radial motion of "xed}"xed cylinders with ¸/a"2 and beryllium
material properties and m"0 corresponding to Table 3.
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4. CONCLUDING REMARKS

Frequencies and modes shapes have been reported for a number of "nite cylinder length
to radius ratios and two di!erent materials with axisymmetric material properties. It was
demonstrated that the "nite element formulation gave su$ciently accurate results for
frequency of vibration. Boundary conditions for "xed}free and "xed}"xed cylinders were
included as primary examples to augment and extend the results in literature. The analysis
could be extended to include a greater variety of ¸/a ratios and additional hexagonal
materials can be studied. If follows that the "nite element analysis is quite versatile and can
be applied in numerous practical situations.



Figure 7. Mode shapes for longitudinal/radial motion of "xed}"xed cylinders with ¸/a"4 and beryllium
material properties and m"0 corresponding to Table 3.

TABLE 4

Convergence of frequencies X for hollow isotropic cylinders with inside radius b/a, l"0)3 and
length ¸/a"2)0

b/a

Mode 0)001 0)01 0)05 0)1

Fixed}free cylinder
1 1)286 1)286 1)286 1)285
2 2)960 2)960 2)951 2)971
3 3)169 3)168 3)158 3)124
4 4)183 4)182 4)158 4)024
5 4)298 4)298 4)298 4)287

Fixed},xed cylinder
1 2)582 2)582 2)581 2)580
2 3)749 3)748 3)723 3)639
3 3)957 3)956 3)949 3)920
4 4)822 4)821 4)804 4)750
5 5)021 5)021 5)030 5)052
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